
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

Unsupervised Image Sequence Registration and
Enhancement for Infrared Small Target Detection

Runze Hou1, Puti Yan2, Xuguang Duan3, Xin Wang3,∗, Member, IEEE,

Abstract—In the burgeoning realm of deep learning and with
the introduction of the infrared target detection dataset, infrared
small target detection has increasingly garnered attention. Within
this domain, multi-frame infrared small target detection stands
as a pivotal and challenging sub-task. Notably, some recent
methods have exhibited commendable performance in multi-
frame infrared scenes. However, these methods were tethered
to time-consuming background alignment pre-processing, which
impedes their real-world application of multi-frame infrared
target detection systems. In this paper, an unsupervised end-
to-end framework tailored for infrared image sequence registra-
tion was proposed. This framework diverges from traditional
registration methods by incorporating a novel Basket-based
Hierarchical Temporal Consistency loss. The proposed loss func-
tion achieve intra-basket consistency and inter-basket diversity,
effectively mitigating issues related to inconsistency. Additionally,
the framework includes the Input Thresholding Mask and Output
Transformation Mask. These components are crucial for guiding
the network’s training process and correcting misalignments.
Moreover, the introduction of a dual-level residual enhancer is
proposed to enhance the quality of registered images, thereby
improving overall performance. Extensive experimental results
have demonstrated the superiority of the proposed method over
baseline methods. The proposed method achieved a significant
improvement in the F1 − score metric on a public dataset,
reaching 0.8882, and an inference speed of 23.34 FPS. This
represents an improvement of 0.0190 in performance and a
sixfold increase in speed compared to the state-of-the-art method
in multi-frame infrared small target detection.

Index Terms—Deep learning, computer vision, infrared imag-
ing, target detection, image registration, image enhancement

I. INTRODUCTION

IN recent years, the development of deep learning (DL)
technologies has led to their integration into various re-

search domains to enhance performance. Its integration is
particularly evident in computer vision tasks, such as image
classification [1], [2], object detection [3], semantic segmenta-
tion [4], and instance segmentation [5], [6]. Moreover, research
interest has extended beyond natural images to encompass data
from infrared, hyperspectral, and LiDAR sources due to their
imaging advantages [7], [8]. As an important part of night
rescue and ground observation, infrared small target detection
also followed this trend, and the publication of several infrared
datasets [9]–[13] for target detection has further accelerated

1. Runze Hou is with Tsinghua-Berkeley Shenzhen Institute, Tsinghua
University, China. (hrz21@mails.tsinghua.edu.cn)

2. Puti Yan is with the Department of Aerospace Engineering, Harbin
Institute of Technology, Harbin, China.

3. Xuguang Duan, Xin Wang is with the Department of Computer Science
and Technology, Tsinghua University, China. (xin wang@tsinghua.edu.cn)

* Corresponding author.

this process. In the realm of infrared imaging, the detection
of small targets presents specific challenges. Typically, these
targets appear dim and are often obscured by complex and
variable backgrounds, resulting in reduced texture and shape
visibility and increased background noise. DL-based methods
have shown effectiveness in addressing these challenges. They
leverage extensive data to distinguish actual targets from
background noise and maintain consistent performance across
various background types. In contrast, the traditional methods
required parameter tuning for each specific scenario, which
limits their application in complex real-world systems.

Infrared small target methods can be categorized into
two primary types: single-frame-based and multi-frame-based
methods. The former focused on distinguishing targets from
the background by local contrast information, while the latter
required extracting spatio-temporal features through infrared
sequences. Single-frame-based methods were suitable for the
condition that there are significant distinctions in brightness,
texture, and other factors between the targets and the back-
ground. However, the contrast information was insufficient
when the targets become smaller and the background becomes
more complex. In some cases, the motion information from
multiple frames should be introduced to serve as the essential
feature for detection. In traditional methods, researchers usu-
ally designed methods to exploit this information explicitly.
For example, single-frame methods could utilize local contrast
information through spatial filters, and multi-frame methods
could utilize motion information through optical flow. In addi-
tion to these traditional methods, the research of single-frame
infrared small target detection in DL area has made significant
progress since the continuous efforts and exploration [9]–
[11], [14]–[17] of researchers. Concurrently, the more complex
scenario has garnered increasing interest, as evidenced by
research focusing on multi-frame detection [7], cross-domain
detection [18], and low-contrast scene detection [19].

In network design, the primary distinction between single-
frame and multi-frame detectors lies in the requirement of
multi-frame methods to capture motion information of moving
targets across continuous frames. Though optical flow is an
effective tool for motion modeling, its application is limited
in small target detection due to the establishment condition of
the motion consistency assumption cannot be satisfied by small
targets in some scenarios. Therefore, the recent multi-frame
networks [7], [20]–[22] directly took inter-frame difference
after registration or alignment as the input motion information.
The registration component in this process is critical. Without
proper registration, the inter-frame difference will become the
brightness change of the background rather than the targets.
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Therefore, the quality of registration profoundly influences
the overall detection performance. It should be noted that
owing to the distinctions in imaging techniques, natural im-
ages frequently exhibit higher resolutions and more details.
Consequently, algorithms for the detection of small moving
targets in natural images generally do not require a registration
process. In contrast, datasets derived from infrared imaging,
characterized by lower clarity and smaller size of targets,
necessitate a rigorous reliance on the registration process
for the effective detection of such small moving targets. In
these multi-frame infrared small target detection methods, the
standard registration pipeline comprises Feature Extraction,
Feature Description, Feature Matching, and Homography Cal-
culation. These stages are integral to various applications,
including image registration and image stitching.

However, this pipeline works under a pair of images. This
approach results in the division of continuous frames into sev-
eral independent pairs for registration, consequently overlook-
ing the continuity between adjacent frames. The challenges of
this traditional pipeline can be categorized as follows:

• Inconsistency. The pairwise processing ignored the con-
sistent motion of adjacent frames, and the outlier estima-
tion will bring abnormal registration results, which result
in wrong detection.

• Misalignment. The traditional pipeline relied on the
extracted features from the original images. In instances
where infrared images lack sufficient edge, texture, or
other prominent visual information, the registration pro-
cess was prone to failure.

• High Time Consumption. Each component of the
pipeline required much computation, and combining the
four parts will consume significant computing resources,
making it difficult for the detection algorithms to process
in real-time.

In this paper, an unsupervised image registration framework
for infrared image sequences was proposed to address the
identified weaknesses and limitations in existing registration
pipelines. The main contributions of this paper can be sum-
marized as follows:

• This paper proposed the first learning-based image se-
quence registration method for infrared images. The
proposed method substantially enhanced the speed of
sequence registration and solved the challenge of High
Time Consumption. Together with the state-of-the-art
(SOTA) detector, it offered a solution for a real-time in-
frared small moving target detection on edge AI devices.

• This paper introduced Basket-based Hierarchical Tem-
poral Consistency constraint, which consisted of Intra-
Basket Consistency and Inter-Basket Diversity strategy.
The constraint addressed the issue of Inconsistency be-
tween adjacent frames and improved feature diversity.

• This paper designed a mask-guided mechanism, including
Input Thresholding Mask and Output Transformation
Mask for guiding both feature extraction and the network
training. The mechanism solved the problem of Misalign-
ment and addressed issues such as the lack of edges, as
well as blurred texture encountered in infrared imaging.

• This paper proposed a Dual-level Residual Enhancer
module to enhance the details in infrared images without
multiplying the resolution of the input images.

II. RELATED WORKS

A. Homography Estimation

Homography estimation is the core component of image
registration, where the image registration is the result by
applying estimated homography transformation to the input
image. Traditionally, this process comprises several stages:
feature extraction (SIFT [23], SURF [24], and ORB [25]),
feature description (SIFT [23], SURF [24], and ORB [25]),
feature matching (FLANN [26]) and final estimation ( [27],
RANSAC [28] and MAGSAC [29]). In recent years, DL-based
alternatives for some of these steps have emerged, including
SuperPoint [30] for feature extraction and description, and
HardNet [31] for feature matching.

Apart from the traditional pipeline, various end-to-end
methods have also been developed. DeTone et al. [32] pro-
posed the first deep neural network HomographyNet for ho-
mography estimation, which achieves comparable performance
with ORB. Nguyen et al. [33] first applied an unsupervised
training style to deep homography estimation and achieved
better performance compared with supervised methods under
aerial images. Zhang et al. [34] further extended unsupervised
homography estimation from aerial images to real-world im-
ages and proposed a new dataset for homography estimation.
Ye et al. [35] proposed a new framework for unsupervised
homography estimation, which estimates homography as a
weighted sum of eight pre-defined orthogonal homography
flow bases rather than four point offsets of a specific rectangle.
Considering that a single homography can not represent the
complex spatial transformation, Nie et al. [36] proposed a
multi-grid deep homography network to predict homography
from global to local. Hong et al. [37] additionally considered
the problem of plane-induced parallax, proposed a generative
adversarial network to add coplanar constraints and applyied a
coarse-to-fine mechanism to predict homography transforma-
tion. Cao et al. [38] proposed an Iterative Homography Net-
work (IHN), which predicts homography in an iterative manner
under completely trainable parameters. Recently, Jiang et al.
[39] proposed a progressive estimation strategy by converting
large-baseline homography into multiple intermediate ones and
training the whole network in a new semi-supervised style,
which achieves better performance in large-baseline scenes.

There have also been methods focusing on image sequence
registration. To mitigate error accumulation in inter-frame ho-
mography estimation, Liu et al. [40] utilized multiple reference
frames for constructing panoramic images. Similarly, Lin et al.
[41] and Kim et al. [42] employed high-resolution maps for
error reduction. The above methods mainly solved the problem
of error in panoramic image, not the temporal consistency of
image registration. Dunau et al. [43] estimated the homogra-
phy for infrared sequences through correspondences of GPS
points from different frames. However, this method cannot
utilize the original image to solve the problems, and was
limited by the unavailability of GPS data in most scenarios.
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Yang et al. [44] presented a novel integrated global-to-local
framework that addresses the problems of dynamic infrared
and visible image sequence registration. More recently, Zhao et
al. [45] proposed an algorithm for registering planar infrared-
visible image sequences through spatio-temporal association.
Besides, there were several learning-based methods [46]–[50]
that perform registration of infrared images. However, they
ignored the temporal relation between continuous frames and
required visible images for multi-modal fusion, which is not
suitable for infrared small moving target detection. In contrast,
the proposed method mainly solves the problem of deep
homography estimation under infrared-only image sequences.

B. Infrared Small Target Detection

Research on infrared small target detection has contin-
ued for decades. During this period, numerous researchers
have proposed a wide array of methods grounded in diverse
theoretical frameworks. This section aimed to review these
methods for detecting infrared small targets, and introduce
both traditional approaches and DL-based methods in recent
years. Each category of methods is further divided into single-
frame detection and multi-frame detection for discussion.

The main idea of the single-frame method was to use spatial
contrast information to enhance the target and suppress the
background noise. Current methods of utilizing spatial con-
trast information included imitating the human visual system
[51], [52], designing spatial filters [53], performing saliency
detection through attention mechanisms [54], locally modeling
targets [55], and calculating gradient information [56].

In addition to spatial information, multi-frame methods also
required to utilize spatiotemporal information, such as motion
and brightness change, to deduce the location of the target.
Current methods for extracting and utilizing spatiotemporal
information included optical flow extraction [57], [58], back-
ground modeling [59], and spatiotemporal filtering [60].

Recently, some researchers have proposed new mechanisms
for infrared small target detection. Cui et al. [61] designed
a Hollow Side Window Filter (HSWF) to cope with the
background estimation problem. This process was weighted
by the saliency map constructed by heterogeneity filter. Zhou
et al. [62] proposed a four-leaf model, which includes macro
Background Suppressor (BS) and micro Texture Collector
(TC). The combination of TC and BS not only suppress
background clutter but also improve the detection performance
of infrared small targets. Zhao et al. [63] first introduced
the isolation Forest (iForest) mechanism into infrared small
target detection area. By constructing both global iForest and
local iForest, the proposed method improved the detection
probability and eliminated the false alarms.

With the advent of deep learning technology and the in-
troduction of infrared image datasets, learning-based neural
networks have made great progress in infrared small target de-
tection in recent years. These advancements have significantly
reduced the need for scene-specific parameter adjustments
inherent in traditional algorithms, significantly enhancing the
applicability of infrared small target detection systems in
varied real-world scenarios.

As mentioned above, infrared small target detection methods
can be classified into single-frame and multi-frame methods.
Among them, single-frame-based detection network design has
been studied for a longer time.

In single-frame detection, the primary focus is on extracting
local contrast information from an individual infrared frame.
Most single-frame networks aim to extract and fuse contrast
information at different scales for final prediction. For the
multi-scale feature extraction part, some methods [15], [64]–
[66] applied convolution kernels at different sizes to features
on the same stage to achieve multi-scale feature extraction. In
contrast, some methods [11] applied kernels at the same size
to features from different stages to achieve multi-scale feature
extraction. For the feature fusion part, there were progressive
and parallel feature fusion mechanisms. The former [10], [15],
[64] gradually up-sampled small-scale feature maps and fuses
them with large-scale feature maps, while the latter [11], [65],
[66] fused feature maps of all scales at once. Besides, some
methods additionally designed different attention mechanisms
for better extracting the features, such as Channel and Spatial
Attention Module (CSAM) [11], Multi-head Self-Attention
(MSA) [16]; Some methods designed different modulation
mechanisms for better fusing the features, such as Asymmetric
Contextual Modulation (ACM) [10], Bottom-up Local Atten-
tional Modulation (BLAM) [15].

In addition, there were also several innovative solutions
proposed to address detection challenges. Wang et al. [9]
regarded infrared small target detection as a balance between
miss detection and false alarm, and achieved the balance
through adversarial training. Chen et al. [67] tried to use a
unified framework to achieve both detection and segmentation
tasks for utilizing location information better. Zhang et al.
[19] designed a multiscale single-stage detector to handle
scale changes of targets and proposed a nonlocal quadrature
difference measure in deep feature space, which converting
feature points that break semantic continuity to the potential
target locations. Wang et al. [17] proposed Interior Attention-
Aware network (IAANet). IAANet first obtained the region of
interest through the Region Proposal Network (RPN) and then
obtains prediction through attention perception. To reduce the
gap between different domains, Zhang et al. [18] proposed an
unsupervised domain adaptive method based on content decou-
pling, so as to better complete the detection of cross-domain
small infrared targets. These various designs have significantly
advanced single-frame infrared small target detection.

In contrast, there were still few detection networks specially
designed for multi-frame scenes. But as the problems in single-
frame scenes gradually solved, the problem of detection in
multi-frame scenes has become a trend in recent years.

A straightforward solution for multi-frame detection was
to input multiple frames into a single-frame detector. Some
methods enhanced one frame with multi-frame information
to use single-frame detectors. Kwan et al. [68] and Ying et
al. [69] deployed super-resolution technology to enhance the
target and fed the enhanced results to a single-frame detector
for detection. However, these methods were not tailored for
multi-frame scenarios, and the increasing resolution dramati-
cally increases the computational consumption.
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Some methods [70]–[72] modified single-frame detection
networks to accept multiple frames by altering the input
channels of first convolution layer. This kind of modification
was direct but ignored the complex temporal relationship of
continuous frames. After that, some methods [20]–[22] further
replaced raw frames into frames after registration and fed the
frame difference together with the raw frames to detection
networks. These methods draw lessons from the frame differ-
ence method and have a stronger response to moving objects.
Recently, Spatial-Temporal Differential Multi-scale Attention
Network (STDMANet) [7] further introduced temporal multi-
scale information to multi-frame detection methods.

As multi-frame infrared small target detection evolves,
frame registration has become increasingly vital. However,
as mentioned before, the traditional registration pipeline re-
stricted the effectiveness and application potential of multi-
frame infrared detectors. Although Li et al. [22] attempted to
solve the problem of rapidity, this method was only designed
to align two frames and not suitable enough for continuous
sequences. Therefore, this paper aims to bridge these gaps.

III. PROPOSED METHOD

This section outlines the structure of the proposed method.
Section III-A is dedicated to presenting the preliminaries of
deep homography estimation, including fundamental concepts
and procedures. Subsequently, Sections III-B, III-C, and III-D
each offer solutions designed to address the specific weak-
nesses inherent in the traditional registration pipeline. These
sections collectively provide a comprehensive overview of the
proposed framework and its underlying principles.

A. Preliminary and Problem Formulation

For a deep homography estimation network, the input of
the network are two gray images, source image Is and target
image It with the size H ×W . The expected results of deep
homography estimation networks is homography flow/map
Fst ∈ RH×W×2, which represents the expected offset of each
point in the image towards the horizontal and vertical direction
from the source domain to the target domain. However, opti-
mizing the problem of directly predicting the final homography
is difficult [32], so most papers use intermediate variables to
predict the final homography map.

Some methods [32]–[34] predict 4-point offsets H4pt ∈
R4×2 of corner location as the intermediate variables, which is
also called as 4-point parameterization. Given four points that
can be connected as a quadrilateral in the source image, H4pt

represents the offsets between the corresponding locations
and original locations of these points. The offsets H4pt are
then used to generate the non-singular homography matrix
Hmatrix ∈ R3×3 through the normalized Direct Linear Trans-
form (DLT) algorithm [27]. Then, the homography matrix can
be obtained from

F (x, y) = [Hmatrix − I3×3]

xy
1

 (1)

where x and y denote the index of location in the horizontal
and vertical direction, and the points are presented by homoge-
neous coordinates. Assuming that the prediction of the network
is H∗

4pt, the supervised loss function used for backpropagation
can be written as

LH =
∥∥H4pt −H∗

4pt

∥∥
p

(2)

where p indicates the p-norm. However, since the ground
truth H4pt is unavailable in most cases, the mainstream
methods apply an unsupervised photometric loss for training.
Assuming that F ∗

st is the estimated homography flow through
DLT between H∗

4pt and four original points, the unsupervised
photometric loss from the source image to the target image
can be written as

Lst
P = ∥It −W (Is, F

∗
st)∥p (3)

where W indicates warping Is to the perspective of It accord-
ing to the homography flow F ∗

st.
Some methods [35], [37] predict weight factors for pre-

defined orthogonal homography bases as the intermediate
variables. The homography flow can be represented by eight
orthogonal flow bases

F =
∑
i

αiFi, i = 1, 2, ..., 8 (4)

where Fi ∈ RH×W×2, αi is coefficients and ∀i, j, FT
i Fj = 0.

For more details on bases acquisition, please refer to [35].
In addition to the photometric loss mentioned above, most

methods [34], [35] apply feature loss LF at the same time.
The feature of source image Is should be close to the feature
of target image It after registration. The loss Lst

F can be
formulated as

Lst
F = ∥ft −W (fs, F

∗
st)∥p (5)

where fs and ft is the extracted feature of Is and It, the
superscript s represents image from source domain, superscript
t represents image from target domain. Within the framework
of the deep homography estimation network, the calculation
of homography flow typically occurs simultaneously from the
source domain to the target domain and vice versa during the
forward process. Both of them are constrained by the loss
function, that is, to calculate Lst, Lts at the same time and
perform backpropagation. For the purpose of clarity in this
exposition, the subsequent discussion will primarily focus on
the perspective of transitioning from the source domain to the
target domain.

The sequence registration problem for infrared small target
detection has differences with above. It requires align k − 1
frames [It−k+1, ..., It−1] to the last frame It, where k is the
windows size and t indicates time step. The expected results
are k − 1 homography flows [Ft−k+1→t, ..., Ft−1→t]. Then
the aligned frames ˜It−i can be obtained through warping by
homography flows, i.e.

˜It−i = W (It−i, Ft−i→t), i = 1, 2, ..., k − 1 (6)
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Fig. 1. The schematic diagram showing different strategies between other registration methods and the proposed method. The strategies of other registration
methods can be summarized as Inter-Instance Independency strategy. In a batch of data, the strategy samples input data from the image pairs and estimates
the homography flows between them. This strategy does not consider the cross-sample continuity or difference information and mines the negative sample
from the single image pair. The proposed strategy are Intra-Basket Consistency and Inter-Basket Diversity strategy. This strategy divides a batch of input data
into several baskets, each containing several consecutive video frames. By constraining the continuity of frames within the basket, consistency in estimating
homography flow can be achieved. By expanding negative samples to different baskets, a diversity of negative samples can be achieved. The different textures
of the input image represent infrared frames from different sequences. Among them, Is is the source domain image, It is the target domain image, φ is the
homography flow estimation network, the output is the homography flow in x direction and y direction. The red output is the positive direction of homography
flow, corresponding to the right direction of x axis and downward direction of y axis.

B. Basket-based Hierarchical Temporal Consistency

Inspired by basket-based learning methods [73], a basket-
based temporal consistency constraint is proposed to solve the
problem of inconsistency. Because the input of multi-frame
infrared detection is continuous, the consistency of background
alignment is essential for the continuity of object motion,
which is precisely the temporal information that multi-frame
infrared detection pays the most attention to.

In the previous methods, the consideration of temporal
consistency was not feasible since the input images are
sampled from the image set rather than continuous videos.
The homography flow is mainly estimated by distinguishing
the transformed features and images from another view. This
process typically accounted for symmetry by estimating both
forward and backward homography flows within a given image
pair, with each pair remaining unaffected by others. This
strategy was referred to as Inter-Instance Independence in this
paper. As shown in Fig. 1, this strategy only mines the positive
and negative samples from a single image pair. Consequently,
it failed to account for both temporal consistency and the
relationships between various input samples.

In response to these limitations, a basket-based strategy was
proposed. This approach involved dividing the input samples
into several baskets, with each basket originating from a
distinct infrared image sequence and containing a number of
frames sampled from that sequence. The conventional methods
of homography estimation equated to having a number of
baskets equal to the number of sequences, where each basket
comprised only two infrared frames (a source frame and a
target frame). In the newly proposed strategy, as each basket

encompassed consecutive infrared frames, it became possible
to achieve temporal consistency in the output homography
flow. This was accomplished by applying constraints to these
consecutive frames, which is termed intra-basket consistency
in this paper. On the other hand, if the input samples only
contain frames from one infrared sequence, it is impossible to
ensure that the model converges quickly and reasonably due to
the high similarity of the input samples. To address this, and
to further enhance the distinctiveness of homography flows,
this paper extend negative samples from single image pairs
to other baskets, which is referred as inter-basket diversity.
The schematic diagram of our strategy is shown in Fig 1.
To ensure both consistency within each basket and diversity
among different baskets, it was necessary to set the number
of baskets and the number of frames within each basket to
relatively large values.

Specifically, the size of the input data batch Bd is Nb×Nf×
H × W , where Nb is the number of baskets and Nf is the
number of samples in each basket. In addition, since infrared
frames can be viewed as grayscale images, there is no need
to consider their colour channels. Afterwards, the first Nf −1
frames in each basket are used as the source domain images,
and the last frame is used as the target domain image for all
previous frames, so the input size is changed to Nb × (Nf −
1)×2×H×W . After the homography estimation network, the
output Bf size is also Nb×(Nf−1)×2×H×W . Note that in
the third dimension, although there are two channels in both
the input and output, the two channels of input represent the
source and target domains, while the two channels of output
represent the x and y directions of the homomorphy flow.
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Based on the above definition, the basket-based hierarchical
temporal consistency loss can be obtained from

Lconst. =

1

Nb

Nb∑
b=1

Nf−2∑
Itv=1

Nf−2∑
Idx=Itv

e−Itv∥(Bf (b, Idx)−Bf (b, Idx− Itv)∥p

(7)

where Itv represents the interval that constrains continuity. An
exponential decay strategy was utilized to demonstrate that the
continuity constraint diminishes as the interval lengthens. Idx
is the index of frames within the basket, which was used for
selecting two homography flows at predetermined intervals for
the purpose of estimation.

In [35], triplet loss are introduced for feature contrast, which
can be written as

Lst
F,Trip. =

1

Nb ∗ (Nf − 1)

Nb∑
b=1

Nf−1∑
Idx=1

(∥∥∥Bf (b,Nf − 1)−W (Bf (b, Idx), F
∗
Idx→Nf−1)

∥∥∥
p

− ∥Bf (b,Nf − 1)−Bf (b, Idx)∥p) (8)

The purpose of introducing triplet loss is to make the
features after the transformation as close as possible to
the features of the other perspective, while simultaneously
maintaining dissimilarity in the original features of the two
perspectives. Some contrastive learning methods [74], [75]
further draw the conclusion that richness of negative sample is
very important for representation learning. Consequently, the
scope of negative samples was expanded from mere features
of a single sample to the features of all other samples within
the same batch, while preserving the fundamental purpose of
the triplet loss. This augmented loss function was termed the
Inter-Basket Diversity (IBD) loss

Lst
F,IBDTrip. =

1

Nb ∗ (Nf − 1)

Nb∑
b=1

Nf−1∑
Idx=1

(∥∥∥Bf (b,Nf − 1)−W (Bf (b, Idx), F
∗
Idx→Nf−1)

∥∥∥
p

− ∥Bf (b,Nf − 1)−Bf (b, Idx)∥p − Lst
F,IBD

(9)

Lst
F,IBD =

1

(Nb − 1) ∗ (Nf − 1)

Nb∑
bd=1

Nf−1∑
fIdx=1

[1− δ(b, bd)] ∥Bf (b,Nf − 1)−Bf (bd, fIdx)∥p
(10)

where δ is an indicator function that has a value of 1 if b
equals bd, used to exclude the current basket.

Ultimately, the loss function used for training is the sum of
the following loss functions

L =Lst
P + Lts

P

+ λ1(L
st
F + Lts

F )

+ λ2(L
st
F,IBDTrip. + Lts

F,IBDTrip.)

+ λ3(L
st
const. + Lts

const.) (11)

where λ1, λ2 and λ3 is the weights of corresponding losses.

C. Mask as Guidance and Enhancement

In addition to inconsistency, another issue in traditional
registration pipelines is misalignment due to the absence of
distinct edge and texture information in some infrared images,
complicating the feature extraction process for subsequent
matching. To mitigate this issue, a mask-based mechanism
was introduced. This mechanism involved thresholding the
input to artificially generate precise edges and corners in
blurry images. As a result, an adequate number of features
were obtained after feeding both the original image and the
additional mask into the network. This process was designated
as Input Thresholding Mask MIT , and its specific effect is
illustrated in Figure 2. The process of feature extraction in
this context can be described as follows.

fs = FeatureProjection([Is,M
s
IT ]) (12)

Afterward, the features extracted from the original infrared
frame and the generated thresholded mask were fed into
the homography estimation network. Following the method
outlined in [35], ResNet34 augmented with Low Rank Rep-
resentation (LRR) blocks was utilized as the homography
estimator. The output of the network comprised eight co-
efficients, serving as weights for predefined flow bases. By
combining predefined homography flows with these weights, a
homography flow from one image to another can be generated.
Subsequently, the original image was resampled using this
homography flow to achieve a perspective-transformed image.
A crucial factor for the convergence of homography estimation
networks was the comparison of these transformed images or
features with the target images and their respective features.
However, due to the varying degrees of background motion,
in some cases, there may be large blank areas (typically 0)
in the transformed images or features. It is unreasonable to
calculate the loss in these areas. To address this, an Output
Transformation Mask MOT was introduced.

MOT = W (1, F ∗) (13)

where 1 is all-ones matrix. The Output Transformation Mask
is used to calculate loss LP , LF and LF,IBDTtip. for detaching
the loss of blank areas. The loss LP can be formulated as

Lst
P = MOT ⊙ ∥It −W (Is, F

∗
st)∥p , (14)

and the loss LF and LF,IBDTtip. follow the same manner of
guidance.

Previous research has shown that image enhancement, such
as super-resolution, positively impact infrared target detection.
However, the small size of infrared targets necessitates that
the infrared target detection network maintains high-resolution
feature maps of the original image size throughout the forward
process of the network. The use of a super-resolution network
significantly enlarges the size of the input image, which results
in an exponential increase in the computational demands of the
detection network. To address this issue, a local enhancement
mechanism was introduced. This mechanism enhances the
input image without altering the overall size of the images,
thereby enhancing detection performance without escalating
the computational load.
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Fig. 2. Schematic diagram of the Mask-guided Local-enhancement Network (MgLeNet). The network first embeds the input frame and the Input Threshold
Mask into the feature space and then obtains the predicted weights of predefined flow bases through the ResNet with LRR blocks to generate the homography
flow. After transforming the frame through the homography flow, an additional two-level residual enhancer is used to further enhance the infrared frame.

In this paper, a dual-level residual module was designed to
address this challenges. Firstly, learning the mapping from the
original image to the enhanced image was difficult, typically
necessitating a deep encoder-decoder network as opposed to
a shallow structure. To overcome this, the first-level residual
was introduced, enabling the network to focus solely on
learning the updates of the image. Secondly, the updates to
the image could be segmented into multiple smaller steps.
To address this, the second-level residual was introduced,
allowing the network to incrementally learn how to update
images. The schematic diagram of this dual-level residual
enhancer module is presented in Figure 2. More specifically,
the dual-level enhancer comprised e residual blocks, with the
final enhancement output being the addition of the original
image and the output from the final residual block. Each
residual block was characterized as a combination of four
ConvBlocks (CB)

fout = fin +CB1(CB8(CB16(CB8(fin)))) (15)

where each ConvBlock is Conv-BN-ReLU, and the subscript
of CB is the output channel dimension of convolution layer.

The integration of mask guidance with local enhancement
led to a homography flow estimation network, termed the
Mask-guided Local-enhancement Network (MgLeNet). This
network was instrumental in mitigating misalignment issues
commonly encountered in infrared image registration and
significantly enhanced the performance of infrared detection
networks.

D. Training Process and Details

The proposed method involved both the registration of
infrared image sequences and the detection of infrared mov-
ing targets. Owing to the absence of suitable datasets and
annotations for evaluating the registration performance, the
performance of multi-frame infrared small target detection
was utilized as an indirect measure to evaluate the efficacy of
registration. Initially, the infrared homography flow estimation
network was trained through the previously introduced loss
function and network. Subsequently, this trained registration
network was employed to fine-tune the detection network.

For the homography estimation network, the Adam [76]
optimizer was applied to train the MgLeNet for 50 epochs with
an initial learning rate of 10−5. An exponential decay method
was used for adjusting the learning rate, with the decay rate γ
established at 0.8. The basket count Nb was set to 8, and the
sample frame count Nf to 5, so training batch size was 32.
Throughout the training, the original frames were resized to
320×320 and then cropped to 256×256 for data augmentation.
In addition, the frames are randomly mirrored and normalized
before being sent to the network. The parameter λ1, λ2 and
λ3 are set to 0.1, 0.1 and 0.001, respectively.

For the multi-frame detection network, STDMANet [7]
offered the SOTA performance. The network are trained under
SIFT+RANSAC registration pipelines. During the fine-tuning
phase, the Adam optimizer was used to fine-tune the detection
model with a batch size of 8 and an initial learning rate of
10−4 for 50 epochs.
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IV. EXPERIMENTS

In this section, extensive experiments were conducted to
demonstrate the superiority of the proposed method. The
dataset, metrics, and network details pertinent to these ex-
periments were introduced in Sections IV-A and IV-B, re-
spectively. In Section IV-C, the experimental results of the
model were detailed and compared with baseline methods ,
encompassing both quantitative and qualitative aspects. Sub-
sequently, the results of ablation experiments were presented
in Section IV-D to illustrate the effectiveness of each module
within the proposed method. Finally, the limitations of this
paper are further discussed in Section IV-E.

A. Dataset and Evaluation Metrics

In this paper, the DSAT [12] dataset was selected for
the experimental evaluation. The DSAT dataset contains 22
sequences captured by infrared cameras from fixed-wing
UAVs. Each sequence contains one or two targets, and the
backgrounds of the dataset include sky and ground. The DSAT
dataset consists of a total of 16,177 frames and 16,944 targets.

For the evaluation of the proposed method, the same metrics
as those employed by STDMANet were followed. Infrared
small targets were represented by their centers, and the dis-
tance between the predicted and ground truth centers was used
as a criterion to determine the success of target detection.
Under this definition, Precision,Recall, and F1 − score are
calculated by the following equation

Precision =
TP

TP + FP
(16)

Recall =
TP

TP + FN
(17)

F1 − score =
2× Precision×Recall

Precision+Recall
(18)

It was stipulated that a prediction was considered correct
(TP ) if the distance between the predicted center and the
ground truth center was within 10 pixels. Additionally, missed
detections (FN ) and false detections (FP ) were added to
calculate the corresponding metrics.

B. Network Details and Settings

The MgLeNet employed ResNet34 with LRR blocks as
its backbone network for predicting eight orthogonal flow
bases. The calculation and acquisition of these bases can be
referred to [35]. Additionally, the Feature Projection module
of MgLeNet is composed of three convolution blocks, with
output channels of 4, 8, and 1, respectively. The dual-level
residual enhancer is composed of three residual blocks, and
each residual block is composed of four convolution layers
with channels of 8, 16, 8 and 1 respectively.

The STDMANet utilized for detection adheres to the struc-
ture outlined in the original paper. The length of the infrared
frame sequence is configured to 20 frames, with each image
sized at 256 × 256. The feature channels for the differential
path, dynamic path, and static path are set to 96, 32, and 32,
respectively, while the output channels for feature aggregation
and Spatial Multi-Scale Feature Refiner are configured to 32.

Furthermore, various network settings were provided in the
ablation studies. Initially, the basket-based hierarchical consis-
tency constraint was omitted, resulting in two distinct settings:
one without the consistency loss and another without the IBD
loss. Subsequently, the mask guidance was removed, leading to
two additional settings lacking the Input Thresholding Mask
and the Output Transformation Mask. Lastly, a setting that
excludes the dual-level residual enhancer was also examined.

All networks and settings are built by the Pytorch [77]
framework, and are trained and tested on an Nvidia GeForce
RTX 3090 GPU, supported by a 72-core Intel Xeon CPU.

C. Comparison to Existing Methods

The proposed method was compared with both traditional
and recent registration pipelines, focusing on the performance
in multi-frame infrared small target detection. Two distinct
comparison approaches were employed. The first approach di-
rectly tested the homography estimator on a detection network
trained on the SIFT+RANSAC pipeline. The second approach
fine-tuned the detection network with the new registration
pipeline. The former was designed to assess the generalization
capability of the registered pipeline to the original pipeline,
whereas the latter aimed to evaluate the maximum potential
performance of the registered pipeline. For the Infrared Ho-
mography Network (IHN), two different configurations were
devised. Config 1 operated on a single scale (resolution) with
six iterations, while Config 2 introduced a second scale and
conducted three additional iterations at this scale.

Quantitative comparison. Table I shows the performance
of the proposed approach compared with the baseline methods,
where the proposed method shows the best performance. Com-
pared with the state-of-the-art method STDMANet in multi-
frame infrared small target detection, the proposed method
can increase the metric F1 score by 0.0190. In addition,
the proposed method also has better performance than other
registration algorithms. In the results without fine-tuning
the detection network, IHN achieves the best performance,
while the proposed method achieves sub-optimal results. This
demonstrates that the performance of IHN registration is the
most similar to that of the SIFT+RANSAC pipeline, while
the proposed method is the second. Since the original model
is trained with the SIFT+RANSAC registration pipeline, other
pipelines can not perform better than the original pipeline.
After fine-tuning the detection network, the proposed method
performs best, and the second best is LoFTR. The highest
detection performance indirectly shows that the proposed
method is the best for the correctness of registration.

The performance comparison before and after fine-tuning
on the SIFT+RANSAC pipeline revealed minimal differences.
This was attributed to the fact that the original network had
been trained on this pipeline, so the fine-tuning acted as an
additional learning rate decay. However, for other registration
pipelines, the detection performance showed varying degrees
of improvement after fine-tuning. Notably, the F1 scores of the
two ORB-based pipelines did not exceed 0.8. Given that the
ORB compromises feature quality for speed compared with
the SIFT, this decline in quality had a significantly negative
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TABLE I
Target detection results under different registration pipelines. THE HIGHEST F1 SCORE IS IN BOLDFACE, AND THE SECOND HIGHEST IS UNDERLINED.

Fine-tuning Registration Running Registration Precision ↑ Recall ↑ F1 − score ↑

% % 0.7437 0.7685 0.7559
% SIFT [23] + RANSAC [28] 0.8378 0.9031 0.8692

% SIFT [23] + MAGSAC [29] 0.8316 0.8985 0.8637
% ORB [25] + RANSAC [28] 0.7084 0.8096 0.7556
% ORB [25] + MAGSAC [29] 0.7407 0.8335 0.7844
% LoFTR [78] + RANSAC [28] 0.8182 0.8832 0.8495
% LoFTR [78] + MAGSAC [29] 0.8176 0.8827 0.8489
% IHN [38] Config 1 0.8040 0.8743 0.8377
% IHN [38] Config 2 0.8281 0.8947 0.8601
% Ours 0.8232 0.8904 0.8555

SIFT [23] + RANSAC [28] SIFT [23] + RANSAC [28] 0.8687 0.8772 0.8729
SIFT [23] + MAGSAC [29] SIFT [23] + MAGSAC [29] 0.8700 0.8789 0.8744
ORB [25] + RANSAC [28] ORB [25] + RANSAC [28] 0.7506 0.7863 0.7680
ORB [25] + MAGSAC [29] ORB [25] + MAGSAC [29] 0.7822 0.8185 0.7999
LoFTR [78] + RANSAC [28] LoFTR [78] + RANSAC [28] 0.8707 0.8801 0.8754
LoFTR [78] + MAGSAC [29] LoFTR [78] + MAGSAC [29] 0.8698 0.8795 0.8746
IHN [38] Config 1 IHN [38] Config 1 0.8333 0.8737 0.8530
IHN [38] Config 2 IHN [38] Config 2 0.8514 0.8861 0.8684
Ours Ours 0.8746 0.9022 0.8882

TABLE II
Inference time and FPS between the proposed model and other methods. THE TIME SHOWN HERE IS THE INFERENCE TIME OF THE WHOLE PROCESS
(REGISTRATION AND DETECTION), NOT JUST THE INFERENCE TIME OF THE DETECTION NETWORK. HENCE, THE SPEED OF THE STDMANET, WHICH

DEPENDS ON HEAVY CPU COMPUTATION DURING REGISTRATION, IS MUCH SLOWER THAN THE ORIGINAL PAPER.

Method Inference Time ↓ FPS ↑ Speed Up

SIFT [23] + RANSAC [28] 259ms 3.86 1×

SIFT [23] + MAGSAC [29] 262ms 3.82 ∼ 1×
ORB [25] + RANSAC [28] 89ms 11.29 2.92×
ORB [25] + MAGSAC [29] 89ms 11.18 2.90×
LoFTR [78] + RANSAC [28] 332ms 3.01 0.78×
LoFTR [78] + MAGSAC [29] 332ms 3.00 0.78×
IHN [38] Config 1 82ms 12.20 3.16×
IHN [38] Config 2 117ms 8.58 2.22×

Ours 43ms 23.34 6.05×

impact on the detection of infrared small targets. After fine-
tuning, the pipeline proposed in this paper exhibited the most
substantial progress. Considering that the proposed pipeline
was specifically designed to address the issue of temporal con-
sistency in continuous registration, the observed performance
gap indicated the importance of temporal consistency. This
omission likely limited the potential for further enhancements
in detection performance of other registration pipelines.

At the same time, the speed (FPS) and inference time of the
proposed method compared to other methods is shown in Table
II, where the batch size is set to 1 in all speed tests. Compared
with the original STDMANet pipeline, the proposed method
can increase the speed by more than 6 times and is also faster
than the registration method used for comparison.

Qualitative comparison. In Fig.3, a sample sequence was
displayed for the purpose of visualizing registration, along
with the results of various registration methods applied to
this sequence. For simplicity, only the results of MAGSAC
were provided in this illustration since there is no essential
difference between RANSAC and MAGSAC.

In most sequences, each registration pipeline can perform

well. The sample sequence is a challenging scene that contains
fog, which causes the features of the image to become blurred.
The background motion in the sequence is mainly horizontal,
with only a tiny vertical change. At the same time, the motion
is mainly caused by translation and does not include more
complex rotation, scaling, affine, and other transformations.

The original SIFT-based registration pipeline faces signif-
icant challenges from the registration results, especially in
frame #13, which produces a significant tilt. At the same
time, the registration result is inconsistent, and there is an
apparent sudden change in the registration result of frame
#15. As a faster alternative to SIFT, ORB performs worse,
produces an incredible registration result at frame #14, and
hardly changes in other frames since it does not detect enough
feature points. LoFTR and IHN perform well, but there is a
tilt simultaneously, while there are only translation transfor-
mations in the sequence. In contrast, the proposed method
performs best, the transformations are all translations, and
the consistency is also well-guaranteed. Furthermore, we have
enlarged the registration result of frame #16 in the figure. For
enlarged frames, the SIFT pipeline demonstrated significant
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Frame #13 (Source Image) Frame #14 (Source Image) Frame #15 (Source Image) Frame #16 (Source Image) Frame #17 (Source Image) 

Frame #18 (Source Image) Frame #19 (Source Image) Frame #20 (Source Image) Frame #21 (Source Image) Frame #22 (Target Image) 

Method Registered Frame #13 Registered Frame #14 Registered Frame #15 Registered Frame #16 Registered Frame #17 Registered Frame #21 

SIFT 

ORB 

LoFTR 

IHN 

Config2 

Ours 

Fig. 3. Visualization results of different registered pipelines on an image sequence. In the top two rows, the original infrared image sequence was displayed,
comprising a total of 10 frames. Among these, the first 9 frames represented images from the source domain, while the final frame served as the target for
all source domain images. The comparison between the results of the proposed method and other pipelines was illustrated in the subsequent five rows. Given
that the motion in the last few frames of the sequence was small, only the registration results of the first five frames and the penultimate frame were shown.
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Source Frame Target Frame SIFT ORB LoFTR IHN Config2 Ours

Fig. 4. Visualization results of different registered pipelines on several image pairs. The first two columns represented the source and target images. The
comparison between the results of the proposed registration pipelines and other pipelines was illustrated in the subsequent five columns.

skew, the ORB pipeline failed to achieve registration, and
the discrepancies for other pipelines were within few pixels.
However, considering that the target size may be within few
pixels for multi-frame infrared small target detection, pixel-
level improvements have a positive effect on detection.

In addition to the above sequence, we also selected other
challenging image pairs for presentation. These scenes in-
cluded cities and mountains, and include conditions such as
fog and motion blur. The registration results of different reg-
istration pipelines were shown in Fig. 4 . Comparing different
registration pipelines, it was difficult for pipelines based on
SIFT and ORB to achieve reasonable results in these scenarios.
The LoFTR pipeline exhibited improved performance, but
tended to produce skewed predictions for translations (first
and fourth rows). IHN performed well in most cases, and was
only slightly inferior to our method in few pixels. For the
registration results in the second row, only our method shows
a slight and stable upward movement trend of background.

Through Fig. 3 and Fig. 4, we qualitatively demonstrated the
superiority of our method in terms of consistency and diversity
respectively. Compared with existing registration pipelines, our
proposed method could produce temporal consistent predic-
tions and perform well in various complex scenarios.

D. Ablation Studies

Several ablation studies were conducted on the DSAT
dataset to ascertain the effectiveness of the components within

the proposed method. The results of these experiments are
presented in Table III. Specific modules were removed from
the complete model, following which the detection perfor-
mance was evaluated to determine their contributions to the
model. The first row of the table displays the performance
of the complete model, while the subsequent rows detail the
ablation of various losses, masks, and modules. As indicated
by the table, the removal of each component from the model
resulted in a degradation of performance, thereby affirming the
efficacy of the proposed module. In all ablation experiments,
the removal of consistency loss has the greatest impact on the
model, which further illustrates the importance of solving the
problem of temporal consistency in multi-frame registration.

E. Limitations

Some additional special cases were shown in Fig 5. The first
two rows of the figure showed two examples of misalignment.
The SIFT-based pipeline failed in both examples since the
background was sky with few features. In contrast, the pro-
posed method guided the network by input thresholding masks
to generate additional salient features, which achieved better
performance in the first example. In the second example, even
adding additional masks could not guarantee enough feature
information since the thresholding operation could not gener-
ate relatively stable masks. Hence, the proposed method and
the SIFT-based pipeline all failed. However, this situation was
also reasonable to some extent since it was almost impossible

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3392307

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

TABLE III
Ablation results on DSAT dataset. THE PERFORMANCE GAP UNDER DIFFERENT ABLATION ON LOSSES, MASKS AND MODULES ARE SHOWN.

Lconst. LF,IBDTrip.
Input Thresholding

Mask
Output Transformation

Mask
Local

Enhancement Precision Recall F1 score F1 Diff

✓ ✓ ✓ ✓ ✓ 0.8746 0.9022 0.8882 0.0000

✓ ✓ ✓ ✓ 0.8482 0.8852 0.8663 -0.0219
✓ ✓ ✓ ✓ 0.8672 0.8947 0.8807 -0.0075
✓ ✓ ✓ ✓ 0.8678 0.8002 0.8837 -0.0045
✓ ✓ ✓ ✓ 0.8691 0.9019 0.8852 -0.0030
✓ ✓ ✓ ✓ 0.8553 0.8832 0.8690 -0.0192

Source Frame Target Frame SIFT+RANSAC Ours 

Fig. 5. Some special case examples for registration. Some registration results
based on the proposed method and SIFT-based pipelines are presented to
reveal the reasons and mechanisms of some registration failures.

for this scenario to achieve successful registration based on
the registration theory. The last two rows in the figure show
two examples of consistency, which have very similar source
and target domain images. However, the registration results of
the two examples were obviously different for the SIFT-based
pipeline, further illustrating the importance of introducing
consistency. This kind of registration results would seriously
misunderstand the model and lead to wrong detection results.
With consistency considered, the proposed method generated
more stable results.

Consequently, it was observed that both traditional pipelines
and DL-based registration methods were prone to failure in
scenarios where the image contained insufficient features. The
Input Thresholding Mask proposed in this paper is more
suitable for scenes with complex but blurry background.
Furthermore, the porposed registration method necessitated
training on specific datasets. If the background was less blurry
and time consumption was not the primary concern, tradtional
registration pipelines might represent a more suitable choice.

To sum up, the proposed method solved the problem of
inconsistency and misalignments in infrared image sequence

registration. It could significantly accelerate the speed of multi-
frame infrared target detection while slightly improving the
detection performance. The proposed method have exceeded
the recent registration pipelines both in terms of testing
accuracy and running speed.

V. CONCLUSION

Starting from the time-consuming background alignment
process in multi-frame infrared small target detection, this
paper summarizes three problems: inconsistency, misalign-
ment, and high time consumption. In order to solve these
problems, this paper designs a basket-based hierarchical con-
sistency constraint and mask guidance to solve the problem
of inconsistency and misalignment. In addition, an additional
two-level residual enhancer is introduced to improve the
detection performance further. Finally, this paper achieves a
significant performance improvement and more than 6 times
speed improvement compared with the original pipeline. It
takes a big step toward the practical application of multi-
frame infrared small target detection systems. However, using
the end-to-end method to generate the registered image is
still indirect. In the future, integrating the registration and
detection networks to achieve an end-to-end detection process
can further solve the problem of balance between accuracy
and efficiency.
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